Friday, November 27, 2015


PHILIPS 46PFL7606D/78 


Service Modes
Service Default mode (SDM) and Service Alignment Mode (SAM) offers several features for the service technician, while the Customer Service Mode (CSM) is used for communication between the call centre and the customer. This chassis also offers the option of using ComPair, a hardware interface between a computer and the TV chassis. It offers the abilities of structured troubleshooting, error code reading, and software version read-out for all chassis.
How to Activate SDM
For this chassis there are two kinds of SDM: an analogue SDM
and a digital SDM.
#Analogue SDM: use the standard RC-transmitter and key in the code “062596”, directly followed by the “MENU” (or “HOME”) button.
Note: It is possible that, together with the SDM, the main menu will appear. To switch it “off”, push the “MENU” (or "HOME") button again.
Analogue SDM can also be activated by grounding for a moment the solder path on the SSB, with the indication “SDM”
# Digital SDM: use the standard RC-transmitter and key in the code “062593”, directly followed by the “MENU” (or "HOME") button.
Note: It is possible that, together with the SDM, the main menu will appear. To switch it “off”, push the “MENU” (or "HOME") button again
How to Navigate
When the “MENU” (or “HOME”) button is pressed on the RC transmitter, the TV set will toggle between the SDM and the normal user menu.
How to Exit SDM
Use one of the following methods:
# Switch the set to STAND-BY via the RC-transmitter.
# Via a standard customer RC-transmitter: key in “00”-
Service Alignment Mode (SAM)
# To perform (software) alignments.
# To change option settings.
# To easily identify the used software version.
# To view operation hours.
# To display (or clear) the error code buffer.
How to Activate SAM
Via a standard RC transmitter: Key in the code “062596” directly followed by the “INFO” or “OK” button. After activating SAM with this method a service warning will appear on the screen, continue by pressing the “OK” button on the RC
Customer Service Mode (CSM)
When a customer is having problems with his TV-set, he can call his dealer or the Customer Helpdesk. The service technician can then ask the customer to activate the CSM, in order to identify the status of the set. Now, the service technician can judge the severity of the complaint. In many cases, he can advise the customer how to solve the problem, or he can decide if it is necessary to visit the customer. The CSM is a read only mode; therefore, modifications in this mode are not possible. When in this chassis CSM is activated, a test pattern will be displayed during 5 seconds (1 second Blue, 1 second Green and 1 second Red, then again 1 second Blue and 1 second Green). This test pattern is generated by the PNX51X0 (located on the 200Hz board as part of the display). So if this test pattern is shown, it could be determined that the back end video chain (PNX51X0 and display) is working.For TV sets without the PNX51X0 inside, every menu from CSM will be used as check for the back end chain video. When CSM is activated and there is a USB stick connected to the TV set, the software will dump the CSM content to the USB stick. The file (CSM_model number_serial number.txt) will be saved in the root of the USB stick. This info can be handy if no information is displayed.
When in CSM mode (and a USB stick connected), pressing “OK” will create an extended CSM dump file on the USB stick. This file (Extended_CSM_model number_serial number.txt)
# The normal CSM dump information,
# All items (from SAM “load to USB”, but in readable format),
# Operating hours,
# Error codes,
# SW/HW event logs.
To have fast feedback from the field, a flashdump can be requested by development. When in CSM, push the “red” button and key in serial digits ‘2679’ (same keys to form the word ‘COPY’ with a cellphone). A file “Dump_model number_serial number.bin” will be written on the connected USB device. This can take 1/2 minute, depending on the quantity of data that needs to be dumped.
How to Activate CSM
Key in the code “123654” via the standard RC transmitter.
Note: Activation of the CSM is only possible if there is no (user) menu on the screen.
How to Navigate
By means of the “CURSOR-DOWN/UP” knob on the RCtransmitter, can be navigated through the menus.
How to Exit CSM
Press “MENU” (or "HOME") / “Back” key on the RC-transmitter
Fault Finding and Repair Tips
Due to degeneration process of the LED’s fitted on the ambi module, there can be a difference in the color and/or light output of the spare ambilight modules in comparison with the originals ones contained in the TV set. Via SAM => alignments => ambilight, the spare module can be adjusted
Audio Amplifier
The Class D-IC 7D10 has a powerpad for cooling. When the IC is replaced it must be ensured that the power pad is very well pushed to the PWB while the solder is still liquid. This is needed to insure that the cooling is guaranteed, otherwise the Class DIC could break down in short time.
To check the AV PIP board (if present) functionality, a dedicated testpattern can be invoked as follows: select the “multiview” icon in the User Interface and press the “OK” button. Apply for the main picture an extended source, e.g. HDMI input. Proceed by entering CSM (push ‘123654’ on the remote control) and press the yellow button. A colored test pattern should appear now, generated by the AV PIP board (this can take a few seconds).
When CSM is activated and there is a USB stick connected to the TV, the software will dump the complete CSM content to the USB stick. The file (Csm.txt) will be saved in the root of the USB stick. If this mechanism works it can be concluded that a large part of the operating system is already working (MIPS, USB...)
DC/DC Converter
Description basic board
The basic board power supply consists of 4 DC/DC converters and 5 linear stabilizers. All DC/DC converters have +12V input voltage and deliver:
# +1V1 supply voltage (1.15V nominal), for the core voltage of PNX855xx, stabilized close to the point of load; SENSE+1V1 signal provides the DC-DC converter the needed feedback to achieve this.
# +1V8 supply voltage, for the DDR2 memories and DDR2 interface of PNX855xx.
# +3V3 supply voltage (3.30V nominal), overall 3.3 V for onboard IC’s, for non-5000 series SSB diversities only.
# +5V (5.15V nominal) for USB, WIFI and Conditional Access Module and +5V5-TUN for +5V-TUN tuner stabilizer.
The linear stabilizers are providing:
# +1V2 supply voltage (1.2V nominal), stabilized close to PNX855xx device, for various other internal blocks of PNX855xx; SENSE+1V2 signal provides the needed
feedback to achieve this.
# +2V5 supply voltage (2.5V nominal) for LVDS interface and various other internal blocks of PNX855xx; for 5000 series SSB diversities the stabilizer is 7UD2 while for the other diversities 7UC0 is used.
# +3V3 supply voltage (3V3 nominal) for 5000 series SSB diversities, provided by 7UD3; in this case the 12V to 3V3 DC-DC converter is not present.
+5V-TUN supply voltage (5V nominal) for tuner and IF amplifier.
+3V3-STANDY (3V3 nominal) is the permanent voltage, supplying the Stand-by microprocessor inside PNX855xx. Supply voltage +1V1 is started immediately when +12V voltage becomes available (+12V is enabled by STANDBY signal when "low"). Supply voltages +3V3, +2V5, +1V8, +1V2 and +5V-TUN are switched "on" by signal ENABLE-3V3 when "low", provided that +12V (detected via 7U40 and 7U41) is present. +12V is considered OK (=> DETECT2 signal becomes "high", +12V to +1V8, +12V to +3V3, +12V to +5V DC-DC converter can be started up) if it rises above 10V and doesn’t drop below 9V5. A small delay of a few milliseconds is introduced between the start-up of 12V to +1V8 DC-DC converter and the two other DC-DC converters via 7U48 and associated components.
The best way to find a failure in the DC/DC converters is to check their start-up sequence at power “on” via the mains cord, presuming that the stand-by microprocessor and the external supply are operational. Take STANDBY signal "high"-to-"low" transition as time reference. When +12V becomes available (maximum 1 second after STANDBY signal goes "low") then +1V1 is started immediately. After ENABLE-3V3 goes "low", all the other supply voltages should rise within a few milliseconds.